Sains Malaysiana 53(6)(2024): 1333-1341
http://doi.org/10.17576/jsm-2024-5306-09
Dimethyloxalylglycine
(DMOG)-Induced Hypoxia Promotes Migratory and Invasive Properties of HCT116
Colon Cancer Cell Line
(Hipoksia
Aruhan Dimetiloksalilglisin (DMOG) Menggalakkan Sifat Migrasi dan Invasif
Titisan Sel Kanser Kolon HCT116)
NOR EZLEEN QISTINA AHMAD1,2, AMIRAH ALHUSNA MOHD YUSOFF1, NUR FARIESHA MD
HASHIM1, NURUL AKMARYANTI ABDULLAH1, NORAINA MUHAMAD
ZAKUAN1,*
1Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Institute
of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang,
Selangor,
Malaysia
Received: 1 November
2023/Accepted: 20 May 2024
Abstract
Hypoxia, a condition characterised by low oxygen
levels, leads to increased production of a protein called hypoxia-inducible
factor-1 alpha (HIF-1α) in cancer cells. This protein is involved in
driving processes such as vascularization, cytoskeletal reorganisation, and
epithelial-to-mesenchymal transformation (EMT), which contribute to metastasis.
Previous studies used hypoxic workstations, chambers, and incubators to
evaluate the effects of hypoxia on colon cancer cell lines. In a cell culture
model, hypoxic conditions can also be induced using dimethyloxalylglycine
(DMOG) as the hypoxia-mimicking agent. This study aims to investigate the
effects of DMOG-induced hypoxia on colon cancer metastasis, focusing on cell
migration and invasion. HCT116 cells were subjected to hypoxic conditions by
treating them with DMOG, and the expression of HIF-1α proteins was
measured at various time points, followed by wound healing and invasion assays.
It was found that HIF-1α protein expression increases after 6 h of DMOG
induction and persists for 24 h. At 6 and 24 h, a significantly higher
percentage of hypoxic cells migrated compared to normoxic cells. The invasion
assay demonstrated that hypoxic cells were more invasive than normoxic cells
within 24 h. Thus, the increase in migration and invasion of cells is
comparable to the increase in HIF-1α expression at 6 and 24 h. These
findings suggest that DMOG induces HIF-1α expression in colon cancer
cells, leading to enhanced cell migration and invasiveness. The established
model can be further utilised in gene knockdown or drug treatment studies to
evaluate the effects of hypoxia on cancer cells.
Keywords: Colorectal cancer; DMOG; HIF-1α;
hypoxia; metastasis
Abstrak
Hipoksia, merupakan keadaan yang dicirikan oleh paras
oksigen yang rendah, membawa kepada peningkatan pengeluaran protein yang
dipanggil hypoxia-inducible factor-1
alpha (HIF-1α) dalam sel kanser. Protein ini terlibat dalam memacu
beberapa proses seperti vaskularisasi, penyusunan semula sitoskeleton dan
transformasi epitelium-ke-mesenkima (EMT) yang menyumbang kepada metastasis.
Kajian terdahulu menggunakan stesen kerja, kebuk dan inkubator hipoksik untuk
menilai kesan hipoksia pada titisan sel kanser kolon. Dalam model kultur sel,
keadaan hipoksik juga boleh diaruh menggunakan dimetiloksalilglisin (DMOG)
sebagai agen memimik hipoksia. Kajian ini bertujuan untuk mengkaji kesan
hipoksi yang diaruh DMOG pada metastasis kanser kolon dengan memberi tumpuan
kepada migrasi dan invasi sel. Sel HCT116 menjadi hipoksik dengan merawatnya
menggunakan DMOG, kemudian ekspresi protein HIF-1α diukur pada pelbagai
titik masa, diikuti dengan ujian migrasi dan ujian invasi. Didapati bahawa
pengekspresan protein HIF-1α meningkat selepas 6 jam aruhan DMOG dan
berterusan selama 24 jam. Pada 6 dan 24 jam, peratusan migrasi sel hipoksik
meningkat dengan signifikan berbanding sel normoksik. Ujian pencerobohan
menunjukkan bahawa sel hipoksik lebih invasif daripada sel normoksik dalam masa
24 jam. Oleh itu, peningkatan dalam migrasi dan pencerobohan sel adalah selari
dengan peningkatan ekspresi HIF-1α pada 6 dan 24 jam. Penemuan ini
menunjukkan bahawa DMOG mengaruh pengekspresan HIF-1α dalam sel kanser
kolon yang membawa kepada peningkatan kadar migrasi dan pencerobohan sel. Model
ini boleh digunakan selanjutnya dalam kajian berkaitan penindasan gen atau
rawatan ubat untuk menilai kesan hipoksia pada sel kanser.
Kata kunci: DMOG; HIF-1α; hipoksia; kanser
kolorektal; metastasis
REFERENCES
Biller, H.L. & Schrag, D. 2021.
Diagnosis and treatment of metastatic colorectal cancer. JAMA 325(7): 669.
Bray, F., Ferlay, J., Soerjomataram, I.,
Siegel, R.L., Torre, L.A. & Jemal, A. 2018. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
countries. CA: A Cancer Journal for
Clinicians 68(6): 394-424.
Bray, F., Laversanne, M., Weiderpass, E.
& Soerjomataram, I. 2021. The ever‐increasing importance of cancer as
a leading cause of premature death worldwide. Cancer 127(16): 3029-3030.
Chaffer, C.L. & Weinberg, R.A. 2011. A
perspective on cancer cell metastasis. Science 331(6024): 1559-1564.
Chai, X., Wu, X., Ren, J., Du, K., Wu, X.,
Feng, F. & Zheng, J. 2022. Expression of HIF-1α, ANXA3, CD133 and their
associations with clinicopathological parameters in human colon carcinoma. Translational Cancer Research 11(6):
1644-1651.
Chan, M.C., Ilott, N.E., Schödel, J., Sims,
D., Tumber, A., Lippl, K., Mole, D.R., Pugh, C.W., Ratcliffe, P.J., Ponting,
C.P. & Schofield, C.J. 2016. Tuning the transcriptional response to hypoxia
by inhibiting hypoxia-inducible factor (HIF) prolyl and asparaginyl
hydroxylases. Journal of Biological
Chemistry 291(39): 20661-20673.
Davis, C.K., Jain, S.A., Bae, O-N., Majid,
A. & Rajanikant, G.K. 2019. Hypoxia mimetic agents for ischemic stroke. Frontiers in Cell and Developmental Biology 6: 175.
Hamad, H.A., Enezei, H.H., Alrawas, A.,
Zakuan, N.M., Abdullah, N.A., Cheah, Y.K. & Hashim, N.F.M. 2020.
Identification of potential chemical substrates as fuel for hypoxic tumors that
may be linked to invadopodium formation in hypoxia-induced MDA-MB-231
breast-cancer cell line. Molecules 25(17): 3876.
Hanna, S.C., Krishnan, B., Bailey, S.T.,
Moschos, S.J., Kuan, P-F., Shimamura, T., Osborne, L.D., Siegel, M.B., Duncan,
L.M., O’Brien, E.T., Superfine, R., Miller, C.R., Simon, M.C., Wong, K-K. &
Kim, W.Y. 2013. HIF1α and HIF2α independently activate SRC to promote
melanoma metastases. The Journal of
Clinical Investigation 123(5): 2078-2093.
Imran Khan, M. 2022. Exploration of
metabolic responses towards hypoxia mimetic DMOG in cancer cells by using
untargeted metabolomics. Saudi Journal of
Biological Sciences 29(10): 103426.
Jaakkola, P., Mole, D.R., Tian, Y-M.,
Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., Hebestreit,
H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. & Ratcliffe,
P.J. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation
complex by O2-regulated prolyl hydroxylation. Science 292(5516): 468-472.
Majmundar, A.J., Wong, W.J. & Simon,
M.C. 2010. Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell 40(2): 294-309.
Ministry of Health Malaysia. 2019. Malaysia National Cancer Registry Report
2012-2016.
National Cancer Patient Registry-Colorectal
Cancer and Clinical Research Centre (CRC). 2014. The Second Report of the National Cancer Patient Registry-Colorectal
Cancer (NCPR-CRC), 2008-2013. Putrajaya: Ministry of Health.
Neophytou, C.M., Panagi, M.,
Stylianopoulos, T. & Papageorgis, P. 2021. The role of tumour
microenvironment in cancer metastasis: Molecular mechanisms and therapeutic
opportunities. Cancers 13(9): 2053.
Ogle, M.E., Gu, X., Espinera, A.R. &
Wei, L. 2012. Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after
stroke reduces ischemic brain injury and requires hypoxia inducible
factor-1α. Neurobiology of Disease 45(2): 733-742.
Paul, C.D., Mistriotis, P. &
Konstantopoulos, K. 2017. Cancer cell motility: Lessons from migration in
confined spaces. Nature Reviews Cancer 17(2): 131-140.
Pavlacky, J. & Polak, J. 2020.
Technical feasibility and physiological relevance of hypoxic cell culture
models. Frontiers in Endocrinology 11: 57.
Rana, N.K., Singh, P. & Koch, B. 2019.
CoCl2 simulated hypoxia induce cell proliferation and alter the
expression pattern of hypoxia associated genes involved in angiogenesis and
apoptosis. Biological Research 52:
12.
Rankin, E.B., Nam, J-M. & Giaccia, A.J.
2016. Hypoxia: Signaling the metastatic cascade. Trends in Cancer 2(6): 295-304.
Rinderknecht, H., Ehnert, S., Braun, B.,
Histing, T., Nussler, A.K. & Linnemann, C. 2021. The art of inducing
hypoxia. Oxygen 1(1): 46-61.
Sebestyén, A., Kopper, L., Dankó, T. &
Tímár, J. 2021. Hypoxia signaling in cancer: From basics to clinical practice. Pathology and Oncology Research 27:
1609802.
Semenza, G.L. 2010. Defining the role of
hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5): 625-634.
Semenza, G.L., Jiang, B-H., Leung, S.W.,
Passantino, R., Concordet, J-P., Maire, P. & Giallongo, A. 1996. Hypoxia
response elements in the aldolase a, enolase 1, and lactate dehydrogenase a
gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry 271(51):
32529-32537.
Semenza, G.L. 2012. Hypoxia-inducible
factors in physiology and medicine. Cell 148(3): 399-408.
Seyfried, T.N. & Huysentruyt, L.C.
2013. On the origin of cancer metastasis. Critical
Reviews in Oncogenesis 18(1-2): 43-73.
Singh, A., Wilson, J.W., Schofield, C.J.
& Chen, R. 2020. Hypoxia-inducible factor (HIF) prolyl hydroxylase
inhibitors induce autophagy and have a protective effect in an in-vitro ischaemia model. Scientific Reports 10(1): 1597.
Singh, E., Joffe, M., Cubasch, H., Ruff,
P., Norris, S.A. & Pisa, P.T. 2017. Breast cancer trends differ by
ethnicity: A report from the South African National Cancer Registry
(1994-2009). European Journal of Public
Health 27(1): 173-178.
Sung, H., Ferlay, J., Siegel, R.L.,
Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer
Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: A Cancer
Journal for Clinicians 71(3): 209-249.
Takeda, K., Cowan, A. & Fong, G-H.
2007. Essential role for prolyl hydroxylase domain protein 2 in oxygen
homeostasis of the adult vascular system. Circulation 116(7): 774-781.
Uchida, T., Rossignol, F., Matthay, M.A.,
Mounier, R., Couette, S., Clottes, E. & Clerici, C. 2004. Prolonged hypoxia
differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α
expression in lung epithelial cells. Journal
of Biological Chemistry 279(15): 14871-14878.
Wang, G. & Semenza, G. 1993.
Desferrioxamine induces erythropoietin gene expression and hypoxia- inducible
factor 1 DNA-binding activity: Implications for models of hypoxia signal
transduction. Blood 82(12):
3610-3615.
Wicks, E.E. & Semenza, G.L. 2022.
Hypoxia-inducible factors: cancer progression and clinical translation. The Journal of Clinical Investigation 132(11): e159839.
Wong, C.C.L., Gilkes, D.M., Zhang, H.,
Chen, J., Wei, H., Chaturvedi, P., Fraley, S.I., Wong, C-M., Khoo, U-S., Ng,
I.O.L., Wirtz, D. & Semenza, G.L. 2011. Hypoxia-inducible factor 1 is a master
regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences 108(39):
16369-16374.
Zeisberg, M. & Neilson, E.G. 2009.
Biomarkers for epithelial-mesenchymal transitions. Journal of Clinical Investigation 119(6): 1429-1437.
*Corresponding
author; email: noraina@upm.edu.my
|